转子多少画 定子和转子是什么?

发布日期:2024-10-13         作者:嘉怡生活网

  ENIGMA看起来是一个装满了复杂而精致的元件的盒子。不过要是我们把它打开来,就可以看到它可以被分解成相当简单的几部分。下面的图是它的最基本部分的示意图,我们可以看见它的三个部分:键盘、转子和显示器。

  在上面ENIGMA的照片上,我们看见水平面板的下面部分就是键盘,一共有26个键,键盘排列接近我们现在使用的计算机键盘。为了使消息尽量地短和更难以破译,空格和标点符号都被省略。在示意图中我们只画了六个键。实物照片中,键盘上方就是显示器,它由标示了同样字母的26个小灯组成,当键盘上的某个键被按下时,和此字母被加密后的密文相对应的小灯就在显示器上亮起来。同样地,在示意图上我们只画了六个小灯。在显示器的上方是三个转子,它们的主要部分隐藏在面板之下,在示意图中我们暂时只画了一个转子。

   键盘、转子和显示器由电线相连,转子本身也集成了6条线路(在实物中是26条),把键盘的信号对应到显示器不同的小灯上去。在示意图中我们可以看到,如果按下a键,那么灯B就会亮,这意味着a被加密成了B。同样地我们看到,b被加密成了A,c被加密成了D,d被加密成了F,e被加密成了E,f被加密成了C。于是如果我们在键盘上依次键入cafe(咖啡),显示器上就会依次显示DBCE。这是最简单的加密方法之一,把每一个字母都按一一对应的方法替换为另一个字母,这样的加密方式叫做“简单替换密码”。

   简单替换密码在历史上很早就出现了。著名的“凯撒法”就是一种简单替换法,它把每个字母和它在字母表中后若干个位置中的那个字母相对应。比如说我们取后三个位置,那么字母的一一对应就如下表所示:

   明码字母表:abcdefghijklmnopqrstuvwxyz

   密码字母表:DEFGHIJKLMNOPQRSTUVWXYZABC

   于是我们就可以从明文得到密文:(veni, vidi, vici,“我来,我见,我征服”是儒勒·凯撒征服本都王法那西斯后向罗马元老院宣告的名言)

   明文:veni, vidi, vici

   密文:YHAL, YLGL, YLFL

   很明显,这种简单的方法只有26种可能性,不足以实际应用。一般上是规定一个比较随意的一一对应,比如

   明码字母表:abcdefghijklmnopqrstuvwxyz

   密码字母表:JQKLZNDOWECPAHRBSMYITUGVXF

  甚至可以自己定义一个密码字母图形而不采用拉丁字母。但是用这种方法所得到的密文还是相当容易被破解的。至迟在公元九世纪,阿拉伯的密码破译专家就已经娴熟地掌握了用统计字母出现频率的方法来击破简单替换密码。破解的原理很简单:在每种拼音文字语言中,每个字母出现的频率并不相同,比如说在英语中,e出现的次数就要大大高于其他字母。所以如果取得了足够多的密文,通过统计每个字母出现的频率,我们就可以猜出密码中的一个字母对应于明码中哪个字母(当然还要通过揣摩上下文等基本密码破译手段)。柯南·道尔在他著名的福尔摩斯探案集中《跳舞的人》里详细叙述了福尔摩斯使用频率统计法破译跳舞人形密码的过程。

   所以如果转子的作用仅仅是把一个字母换成另一个字母,那就没有太大的意思了。但是大家可能已经猜出来了,所谓的“转子”,它会转动!这就是ENIGMA的最重要的设计——当键盘上一个键被按下时,相应的密文在显示器上显示,然后转子的方向就自动地转动一个字母的位置(在示意图中就是转动1/6圈,而在实际中转动1/26圈)。下面的示意图表示了连续键入3个b的情况:

  当第一次键入b时,信号通过转子中的连线,灯A亮起来,放开键后,转子转动一格,各字母所对应的密码就改变了;第二次键入b时,它所对应的字母就变成了C;同样地,第三次键入b时,灯E闪亮。

  照片左方是一个完整的转子,右方是转子的分解,我们可以看到安装在转子中的电线。

   这里我们看到了ENIGMA加密的关键:这不是一种简单替换密码。同一个字母b在明文的不同位置时,可以被不同的字母替换,而密文中不同位置的同一个字母,可以代表明文中的不同字母,频率分析法在这里就没有用武之地了。这种加密方式被称为“复式替换密码”。

   但是我们看到,如果连续键入6个字母(实物中26个字母),转子就会整整转一圈,回到原始的方向上,这时编码就和最初重复了。而在加密过程中,重复的现象是很危险的,这可以使试图破译密码的人看见规律性的东西。于是我们可以再加一个转子。当第一个转子转动整整一圈以后,它上面有一个齿拨动第二个转子,使得它的方向转动一个字母的位置。看下面的示意图(为了简单起见,现在我们将它表示为平面形式):

  这里(a)图中我们假设第一个转子(左边的那个)已经整整转了一圈,按b键时显示器上D灯亮;当放开b键时第一个转子上的齿也带动第二个转子同时转动一格,于是(b)图中第二次键入b时,加密的字母为F;而再次放开键b时,就只有第一个转子转动了,于是(c)图中第三次键入b 时,与b相对应的就是字母B。

   我们看到用这样的方法,要6*6=36(实物中为26*26=676)个字母后才会重复原来的编码。而事实上ENIGMA里有三个转子(二战后期德国海军用ENIGMA甚至有四个转子),不重复的方向个数达到26*26*26 =17576个。

   不仅如此在三个转子的一端还十分巧妙地加了一个反射器,而把键盘和显示器中的相同字母用电线连在一起。反射器和转子一样,把某一个字母连在另一个字母上,但是它并不转动。乍一看这么一个固定的反射器好象没什么用处,它并不增加可以使用的编码数目,但是把它和解码联系起来就会看出这种设计的别具匠心了。见下图:

  我们看见这里键盘和显示器中的相同字母由电线连在一起。事实上那是一个很巧妙的开关,不过我们并不需要知道它的具体情况。我们只需要知道,当一个键被按下时,信号不是直接从键盘传到显示器(要是这样就没有加密了),而是首先通过三个转子连成的一条线路,然后经过反射器再回到三个转子,通过另一条线路再到达显示器上,比如说上图中b键被按下时,亮的是D灯。我们看看如果这时按的不是b键而是d键,那么信号恰好按照上面b键被按下时的相反方向通行,最后到达B灯。换句话说,在这种设计下,反射器虽然没有象转子那样增加可能的不重复的方向,但是它可以使译码的过程和编码的过程完全一样。

   反射器

   想象一下要用ENIGMA发送一条消息。发信人首先要调节三个转子的方向,使它们处于17576个方向中的一个(事实上转子的初始方向就是密匙,这是收发双方必须预先约定好的),然后依次键入明文,并把闪亮的字母依次记下来,然后就可以把加密后的消息用比如电报的方式发送出去。当收信方收到电文后,使用一台相同的ENIGMA,按照原来的约定,把转子的方向调整到和发信方相同的初始方向上,然后依次键入收到的密文,并把闪亮的字母依次记下来,就得到了明文。于是加密和解密的过程就是完全一样的——这都是反射器起的作用。稍微考虑一下,我们很容易明白,反射器带来的一个副作用就是一个字母永远也不会被加密成它自己,因为反射器中一个字母总是被连接到另一个不同的字母。  

    安装在ENIGMA中的反射器和三个转子

   于是转子的初始方向决定了整个密文的加密方式。如果通讯当中有敌人监听,他会收到完整的密文,但是由于不知道三个转子的初始方向,他就不得不一个个方向地试验来找到这个密匙。问题在于17576 个初始方向这个数目并不是太大。如果试图破译密文的人把转子调整到某一方向,然后键入密文开始的一段,看看输出是否象是有意义的信息。如果不象,那就再试转子的下一个初始方向……如果试一个方向大约要一分钟,而他二十四小时日夜工作,那么在大约两星期里就可以找遍转子所有可能的初始方向。如果对手用许多台机器同时破译,那么所需要的时间就会大大缩短。这种保密程度是不太足够的。

   当然还可以再多加转子,但是我们看见每加一个转子初始方向的可能性只是乘以了26。尤其是,增加转子会增加ENIGMA 的体积和成本。然而这种加密机器必须是要便于携带的(事实上它最终的尺寸是34cm*28cm*15cm),而不是一个具有十几个转子的庞然大物。在Enigma的设计当中,机器的三个转子是可以拆卸下来互相交换的,这样一来初始方向的可能性变成了原来的六倍。假设三个转子的编号为1、2、3,那么它们可以被放成123-132-213-231-312-321六种不同位置,当然现在收发消息的双方除了要预先约定转子自身的初始方向,还要约定好这六种排列中的使用一种。

   其次,键盘和第一转子之间还设计了一个连接板。这块连接板允许使用者用一根连线把某个字母和另一个字母连接起来,这样这个字母的信号在进入转子之前就会转变为另一个字母的信号。这种连线最多可以有六根(后期的ENIGMA具有更多的连线),这样就可以使6对字母的信号互换,其他没有插上连线的字母保持不变。在上面ENIGMA的实物图里,我们看见这个连接板处于键盘的下方。当然连接板上的连线状况也是收发信息的双方需要预先约定的。

  在上面示意图中,当b键被按下时,灯C亮。

   于是转子自身的初始方向,转子之间的相互位置,以及连接板连线的状况就组成了所有可能的密匙,让我们来算一算一共到底有多少种。

   三个转子不同的方向组成了26*26*26=17576种不同可能性;

   三个转子间不同的相对位置为6种可能性;

   连接板上两两交换6对字母的可能性数目非常巨大,有100391791500种;

   于是一共有17576*6*100391791500,大约为10000000000000000,即一亿亿种可能性。

   只要约定好上面所说的密匙,收发双方利用ENIGMA就可以十分容易地进行加密和解密。但是如果不知道密匙,在这巨大的可能性面前,一一尝试来试图找出密匙是完全没有可能的。我们看见连接板对可能性的增加贡献最大,那么为什么要那么麻烦地设计转子之类的东西呢?原因在于连接板本身其实就是一个简单替换密码系统,在整个加密过程中,连接是固定的,所以单使用它是十分容易用频率分析法来破译的。转子系统虽然提供的可能性不多,但是在加密过程中它们不停地转动,使整个系统变成了复式替换系统,频率分析法对它再也无能为力,与此同时,连接板却使得可能性数目大大增加,使得暴力破译法(即一个一个尝试所有可能性的方法)望而却步。

定子和转子是什么?

  定子和转子 简单来说:电机中固定的部分叫做定子,在其上面装设了成对的直流励磁的静止的主磁极;而旋转部分(转子)叫电枢铁心,在上面要装设电枢绕组,通电后产生感应电动势,充当旋转磁场.后产生电磁转矩进行能量转换.以定子绕组的形状与嵌装方式区分,定子绕组根据线圈绕制的形状与嵌装布线方式不同,可分为集中式和分布式两类。 1.集中式绕组 集中式绕组应用于凸极式定子,通常绕制成矩形线圈,经纱带包扎定型,再经浸漆烘干处理后,嵌装在凸形磁极的铁心上。一般换向器式电动机(包括直流电机和通用电动机)的激磁线圈以及单相罩极式凸极电动机的主极绕组都采用集中式绕组。 集中式绕组通常每极有一只线圈,但也有采用庶极(隐极)形式的,如框架式罩极电动机就是用一只线圈形成两极的电动机。 2.分布式绕组 分布式绕组的电动机定子没有凸形极掌,每个磁极由一个或几个线圈按照一定的规律嵌装布线组成线圈组,通电后形成不同极性的磁极,故也称隐极式。根据嵌装布线排列形式的不同,分布式绕组又可分为同心式和叠式两类。 (1)同心式绕组 同心式绕组是由几个形状相似但大小不同的线圈,按同一中心位置嵌装成回字形状的线圈组。同心绕组可根据不同的布线方式而构成双平面或三平面绕组。一般单相电动机及部分小功率或大跨距线圈的三相异步电动机的定子绕组采用这种型式。 (2)叠式绕组叠式绕组一般是由形状、大小相同的线圈,分别以每槽嵌装1个或两个线圈边,并在槽外端部逐个相叠均匀分布的形式。叠式绕组又分单层叠式和双层叠式两种。每槽只嵌入一个线圈边的为单层叠式绕组,或称单叠绕组;每槽嵌入两个属不同线圈组的线圈边时是分置于槽中上、下层,为双层叠式绕组,或称双叠绕组。根据嵌装布线方式变化不同,叠式绕组又可派生出交叉式、同心交叉式以及单双层混合式等型式。目前,一般功率较大的三相异步电动机定子绕组较多采用双层叠式;而小电机则多用单层叠式绕组中的派生型式,但极少采用单层叠式绕组。 三、转子绕组 交流异步电动机的转子绕组分鼠笼型与绕线型两类。鼠笼型结构较为简单,一般由合金铝浇注人转子铁心槽内并由两端端环短接而成;也有用铜条嵌入再焊上铜质端环的。为了改善起动性能,鼠笼型又可制成深槽式及双鼠笼等特殊型式。绕线型转子绕组与定子绕组相同,它除可用上述各式绕组外,还可用波形绕组。波形绕组是由单匝或几匝的杆形单元线圈,嵌装后由两个元件在端部焊接成一只线圈,并形成整个绕组,其布接线原理与上述绕组不同,但外形与双层叠绕组相似。波形绕组常应用于大型的交流电动机转子绕组及直流电动机的电枢绕组。 定子绕组不同的接线形式可以形成不同的极性,电动机根据其极性关系,可分为显极式与庶极式两种类型。 1.显极式绕组 一台具有四个凸极的电动机定子,它的每只线圈形成一个磁极;而且相邻两只线圈所形成的极性不同;在四个凸极上就形成了四个磁极。所以,在显极式绕组中,每组线圈形成一个磁极,即绕组的线圈组数与磁极数相等。此外,为使相邻磁极能呈N、s极性成对存在,则必须使相邻两组线圈里的电流方向相反。因此相邻两个线圈组的连接方式必须是反接串联,也就是电工术语称之为“头接头”、“尾接尾”。 实际上,除直流电机及单相凸极式罩极电动机外,一般定子都没有凸出的极掌。本图是为了较形象地说明问题而采用示意的画法。 2.庶极式绕组 图2—2是一台庶极式四极绕组定子的形象示意图。由图可见,相邻两组线圈的极性是相同的,都是s极,由于同极性相斥的原理,使线圈形成的磁场经相邻凸极返回构成闭合磁路;从而使没有线圈的凸极上产生异极性N磁极。所以,在庶极式绕组中,每个线圈组将形成一对磁极,每相绕组的线圈组数为磁极数的一半。 在庶极式绕组中,因为每组线圈所产生的磁极极性都相同,因而所有线圈里的电流方向都相同,即相邻两个线圈组是顺接串联,如图(b)所示。这种接线方式便是电工俗称的“首尾相接”,即“尾接头”连接。 电机绕组是由线圈组构成一相或整个电磁电路的组合体;而线圈组则由一个或多个线圈顺接串联而成。因此线圈是电动机绕组的基本元件,也是以绝缘导线(圆形或矩形截面导线)按一定形状绕制而成。线圈可以是一匝,也可由数百上千匝绕成,其匝数的多少主要取决于电源电压和电动机电磁部分的参数,并由计算确定。 电动机线圈的形状有多种,但其基本结构由三部分组成,即嵌入铁心槽内的直线部分称有效边,而一只线圈有两个有效边,是产生电磁能量转换的有效部分;连接两有效边的部分,在线圈嵌装后处于铁心两端槽外,称线圈端部,它是线圈构成必不可少的部分,但不能作能量转换;引线是线圈绕制后的首、尾线头,也是引接线圈电流的连接点。 集中式绕组的绕制和嵌装比较简单,但效率较低,运行性能也差。目前的交流电动机定子绝大部分都是应用分布式绕组,根据不同机种、型号及线圈嵌绕的工艺条件,电动机各自设计采用不同的绕组型式和规格,故其绕组的技术参数也不相同

Enigma是什么意思

  Enigma源自于希腊文,既是战争时期所用的密码(在所有用于军事和外交的密码里,最著名的恐怕应属第二次世界大战中德国方面使用的ENIGMA),又是著名德国乐队的名称。

   谢尔比乌斯发明的加密电子机械名叫ENIGMA,在以后的年代里,它将被证明是有史以来最为可靠的加密系统之一,而对这种可靠性的盲目乐观,又使它的使用者遭到了灭顶之灾。  

  ENIGMA看起来是一个装满了复杂而精致的元件的盒子。不过要是我们把它打开来,就可以看到它可以被分解成相当简单的几部分。下面的图是它的最基本部分的示意图,我们可以看见它的三个部分:键盘、转子和显示器。  

   在上面ENIGMA的照片上,我们看见水平面板的下面部分就是键盘,一共有26个键,键盘排列接近我们现在使用的计算机键盘。为了使消息尽量地短和更难以破译,空格和标点符号都被省略。在示意图中我们只画了六个键。实物照片中,键盘上方就是显示器,它由标示了同样字母的26个小灯组成,当键盘上的某个键被按下时,和此字母被加密后的密文相对应的小灯就在显示器上亮起来。同样地,在示意图上我们只画了六个小灯。在显示器的上方是三个转子,它们的主要部分隐藏在面板之下,在示意图中我们暂时只画了一个转子。   键盘、转子和显示器由电线相连,转子本身也集成了6条线路(在实物中是26条),把键盘的信号对应到显示器不同的小灯上去。在示意图中我们可以看到,如果按下a键,那么灯B就会亮,这意味着a被加密成了B。同样地我们看到,b被加密成了A,c被加密成了D,d被加密成了F,e被加密成了E,f被加密成了C。于是如果我们在键盘上依次键入cafe(咖啡),显示器上就会依次显示DBCE。这是最简单的加密方法之一,把每一个字母都按一一对应的方法替换为另一个字母,这样的加密方式叫做“简单替换密码” 。

转子引擎和V8引擎有什么区别?

  区别太大了,

  在过去的400年中,许多发明家和工程师一直都想开发一种连续运转的内燃机。人们希望有朝一日往复活塞式内燃机将被优雅的原动力引擎所取代,它的运动轨迹应该非常接近人类伟大的发明之一:轮子。

   实际上,在十六世纪末期,在出版物中首次出现“连续运转内燃机”的说法。连杆和曲柄机构的发明人沃特詹姆斯 (1736-1819),也曾研究转子式内燃机。特别是在过去的150年里,发明者提出了许多关于转子发动机结构的提案。在1846年,人们画出了当今转子发动机工作室的几何结构,设计了使用外旋轮线的第一辆概念发动机。但是,这些概念都没有实用化,直到汪克尔菲加士博士在1957年研制出汪克尔转子发动机。

   汪克尔博士通过研究和分析各种转子发动机类型的可行性,找到了旋轮线壳体的最佳形状。他对飞机发动机上所用的回转阀以及增压器的气密性密封机构具有深刻的了解,这些机构在其设计中的使用,使汪克尔型转子发动机得以实用化。

  现代的转子发动机由茧形壳体(一个三角形转子被安置在其中)组成。缸体内部空间总是被分成三个工作室,转子转动这些工作室也在运动。依次在摆线型缸体内的不同位置完成进气、压缩、作功(燃烧)和排气四个过程。

   转子和壳体壁之间的空间作为内部燃烧室,通过气体膨胀的压力驱动转子旋转。和普通内燃机一样,转子发动机必须在其工作室中相继形成四个工作过程。如果将三角形的转子放置在圆形壳体的中心部,工作室将不会随着壳体内部转子的旋转而在体积上发生变化。即使空燃混合气在那里点燃,燃烧气体的膨胀压力也仅作用在转子的中部,不会产生旋转。这就是为什么壳体的内侧圆周被设计成旋轮线外形并和安装在偏心轴上的转子组装在一起的原因。因此,每转一圈,工作室的体积变化两次,从而实现内燃机的四个工作过程。

   在汪克尔型转子发动机上,转子的顶点随着发动机壳体内圆周的椭圆形壳体而运动,同时保持与围绕在发动机壳体中心的一个偏心轨道上的输出轴齿轮的接触。三角形转子的轨道是用一个相位齿轮机构来规定的。相位齿轮包括安装在转子内侧的一个内齿圈和安装在偏心轴上的一个外齿轮。如果转子齿轮在其内侧有30个齿,轴齿轮将在其外原周上有20个齿,由此得到其齿数比为3:2。由于这一齿数比,转子和轴之间的转速比被限定为1:3。和偏心轴相比,转子有较长的转动周期。转子转动一圈,偏心轴转动三圈。当发动机转速为3000 转/分时,转子的速度只有1000 转/分。

  与传统往复式发动机的比较

   往复式发动机和转子发动机都依靠空燃混合气燃烧产生的膨胀压力以获得转动力。两种发动机的机构差异在于使用膨胀压力的方式。在往复式发动机中,产生在活塞顶部表面的膨胀压力向下推动活塞,机械力被传给连杆,带动曲轴转动。

  对于转子发动机,膨胀压力作用在转子的侧面。 从而将三角形转子的三个面之一推向偏心轴的中心(见图中力PG)。这一运动在两个分力的力作用下进行。一个是指向输出轴中心(见图中的Pb)的向心力,另一个是使输出轴转动的切线力(Ft)。 

  壳体的内部空间(或旋轮线室)总是被分成三个工作室。 在转子的运动过程中,这三个工作室的容积不停地变动,在摆线形缸体内相继完成进气、压缩、燃烧和排气四个过程。每个过程都是在摆线形缸体中的不同位置进行,这明显区别于往复式发动机。往复式发动机的四个过程都是在一个汽缸内进行的。

   转子发动机的排气量通常用单位工作室容积和转子的数量来表示。例如,对于型号为13B的双转子发动机,排量为"654cc × 2"。

   单位工作室容积指工作室最大容积和最小容积之间的差值;而压缩比是最大容积和最小容积的比值。往复式发动机上也使用同样的定义。

  如图中所示,转子发动机工作容积的变化,以及与四循环往复式发动机的比较。尽管在这两种发动机中,工作室容积都成波浪形稳定变化,但二者之间存在着明显的不同。首先是每个过程的转动角度:往复式发动机转动180度,而转子发动机转动270度,是往复式发动机的1.5倍。换句话说,在往复式发动机中,曲轴(输出轴)在四个工作过程中转两圈(720度); 而在转子发动机中,偏心轴转三圈(1080度),转子转一圈。这样,转子发动机就能获得较长的过程时间,而且形成较小的扭矩波动,从而使运转平稳流畅。

   此外,即使在高速运转中,转子的转速也相当缓慢,从而有更宽松的进气和排气时间,为那些能够获得较高的动力性能的系统的运行提供了便利。

  汪克尔型转子发动机的特点

   体积小重量轻: 转子发动机有几个优点,其中最重要的一点是减小了体积和减轻了重量。在运行安静性和平稳性两方面,双转子RE相当于直列六缸往复式发动机。在保证相同的输出功率水平前提下,转子式发动机的设计重量是往复式的三分之二,这个优点对于汽车工程师们有着无比的吸引力。特别是近年来,在防撞性(碰撞安全)、空气动力学、重量分布和空间利用等方面的要求越来越严格的情况下。

   精简结构: 由于转子发动机将空燃混合气燃烧产生的膨胀压力直接转化为三角形转子和偏心轴的转动力,所以不需要设置连杆,进气口和排气口依靠转子本身的运动来打开和关闭;不再需要配气机构,包括正时齿带、凸轮轴、摇臂、气门、气门弹簧等,而这在往复式发动机中是必不可少的一部分。综上所述,转子发动机组成所需要的部件大幅度减少。

   均匀的扭矩特性: 根据研究结果,转子发动机在整个速度范围内有相当均匀的扭矩曲线,即使是在两转子的设计中,运行中的扭矩波动也与直列六缸往复式发动机具有相同的水平,三转子的布置则要小于V型八缸往复式发动机。

   运行更安静,噪音更小: 对于往复式发动机,活塞运动本身就是一个振动源,同时气门机构也会产生令人讨厌的机械噪音。转子发动机平稳的转动运动产生的振动相当小,而且没有气门机构,因此能够更平稳和更安静的运行。

   可靠性和耐久性: 如前所述,转子的转速是发动机转速的三分之一。因此,在转子发动机以9000 rpm的转速运转时,转子的转速约为该转速的三分之一。另外,由于转子发动机没有那些高转速运动部件,如摇臂和连杆,所以在高负荷运动中,更可靠和更耐久。在1991的勒芒汽车赛中的大获全胜就充分证明了这一点。

   相对于往复式发动机的比较,转子发动机有如下缺点,耗油量比较大。这主要是转子发动机燃烧室的形状不太有利于完全燃烧,火焰传播路径较长,使得燃油和机油的消耗增加。而且转子发动机只能用点燃式,不能用压燃式,也就是不能采用柴油。功率输出轴位置比较高,令整车布置安排不便。另外,转子发动机的加工制造技术高,成本比较贵,推广困难。

凹凸转子泵转子怎么画

  夸大画法

  当遇到很簿,很细的零件或很小的间隙时,可作适当夸大,如图14-5主视图的垫片(涂黑部分)的厚度就作了夸大。

  假想画法

  与本部件有关,但不属于本部件的零件或部件,用双点画线画出,以表示连接关系, 如图14-2中A向视图之凸轮。

  转子泵装配图作图步骤

  1、根据视图选择情况,计算各视图的总体尺寸。

  2、根据各视图的总体尺寸合理布图(在布图时要给零件编号及标注尺寸留有充足的余地)。确定各视图的基准线、轴线、中心线的位置。

  3、根据轴7的右端面定位画出轴。

  4、根据轴7的定位槽,确定并画出转子3及挡圈13,根据键槽画出键15。

  5、根据转子3的左端面确定并画出泵体1。

  6、画出衬套2。

  7、根据转子3的右端面确定并画出泵盖14。

  8、画出压盖螺母9

  9、画出填料压盖12(必须与压盖螺母9紧靠)。

  10、在空隙处画出填料8(注意剖面线用网格)。

  11、画螺钉6及垫片5。

  12、根据轴7上小孔的轴线与胶带轮11上螺纹孔轴线确定并画出胶带轮11及紧定螺钉10,根据键槽画出键16。

  13、画叶片4。

  14、画表示工作原理的视图(可用拆卸画法表达)。

人物绘画比例问题

  一般按照站7坐5盘3半的比例来画。就是说站立的人是7个头高度,坐着是5个头高度,盘腿是3个半头。

  身高也有7.5头的比例

  有8个头的比例.

  矮的胖的,或者俯视角度可以做相应调整

  人的一半在

  耻骨,也就是大转子那里.

  肚脐到耻骨是一个头

  大转子(或者耻骨)到胫骨粗隆

  是两个头.(这也是大腿的长度)

  胫骨粗隆到足底是两个头

  手,大概是三分之2个头长

  脚是七分只一身体的长度

  也就是说比头高长一点

  大臂自然下垂

  与肚脐一边高

  小臂自然下垂

  腕部跟大转子齐高

  男性肩膀的宽度将近两个头长.女性略减

  以上的比例以男性为标准,女性就适当减少点,根据你自己的感觉吧,因为在实际操作中,主要还是以目测为准的,最主要的原因是透视缩短带来的变化.

直流有刷电机转子绕组的问题

  这个很简单!只要将所有绕组全部顺向朝着一个方向绕制就可以,两个绕组的连接处,要刮掉漆包线的绝缘漆,然后焊到对应的换向器接头上就可以。这里只画了两个绕组,其他的照着做就可以。记住:所有绕组的连接处都要与对应换向器接头相连。

转子发动机工作原理是什么样的?有什么优势?

  与一般往复式引擎的上下连动机件相比较,转子引擎的外壳就等於汽缸,而转子即同等活塞,燃烧室则是由转子与转子外壳、侧边外壳所围出来的空间形成。由於转子的三个顶点分别都设有三角气封所密闭,因此其燃烧室可以各自成为独立进行的三个动作(吸入压缩、爆发膨胀、扫气),基本上转子引擎就是在转子外壳中,让转子与偏心轴来对比回转的简易机构,其中转子内圈的齿数为51、中心轴齿数34,因此曲轴转三圈时转子才自转一圈(51-34=17、17/51=1/3)。 转子外壳 转子外壳为铝合金制,内壁设计成施以硬化的电镀眉形(余摆曲线面),三角锥状的转子则在其中进行卫星运动,另外在此面上还设有火星塞孔及排气埠,此外壳就等於往复式引擎中的汽缸头。 转子 转子(Rotar)的作用就如同往复式引擎中的活塞和连杆,外形方面为了制作出内包路线的形状,因此被设计成三角锥形(侧边的凹槽攸关压缩比),根据回转的状态进排气埠会自动开闭,因而兼具进排气门的功能。 侧边外壳 相当於汽缸本体、汽缸头,由於它是组装在圆筒形转子外壳的侧边,形成一密闭的空间,所以也就是燃烧室的作用。此部分有组合转子的侧边气封、弯角气封与机油油封,并且顶面上还配置一吸气埠,中央则具备支持偏心轴轴承的中心齿轮,这个齿轮会与转子内圈的齿轮咬合,进行著控制转子本身的回转工作。 偏心轴 相对其本身的自转会对转子轴承部位形成偏心作用,因而能将转子回转的作动、爆发力转变为动力,角色同等於曲轴的功能,学名又称为输出轴。 三角气封 配置在转子自体三个顶点的三角气封(Apex Seal),三个垫片分别根据位於其底部的排气压力与弹簧张力,在受到转子外壳压迫的同时,由於侧面而来的排废气推挤垫片沟槽的一方,因而能保持顶点及侧边燃烧室的气密性,有类似於活塞环和排气门的功用。 侧边气封/弯角气封 转子本身除了设有顶端的三角气封以外,在其侧面也设计了侧边气封,而两者结合的部分则是用弯角气封连接,形成一环状的立体构造,关於此侧边和弯角气封的功能性上,它们的角色是与活塞的压力环相当,因此不仅能防止正在作动的压缩排废气外漏,亦具备将转子受热的部分,传导至外壳表面的散热作用。 机油油封 由於转子引擎的机油是利用泵浦强制压送至各部位,为了防止机油穿过转子壁面与侧边外壳的空隙,进一步泄漏至燃烧室里,因此是采O型环油封组装在转子侧面的弹簧上,来避免发生吃机油的情形。 转子引擎的特点 动力绵密直逼V6 转子引擎之优点 1.构造简单、价格低廉,同马力之引擎配件数仅为V-8引擎之半,因配件少,毛病自然少,保养费用亦相对减低。 2.重量与体积极轻小,体积仅V-8之三分之一。 3.因无往复运动机件,引擎运转极平稳。 4.没有局部高温,冷却均匀。没有汽门过热现象,故可提高压缩比及使用辛烷值较低的汽油也不易发生爆震,即使发生爆震,对引擎机件的危害也较小。 5.转速可以增加,而且转速愈高性能高。 6.马力加大容易,欲使马力加大,可将引擎尺寸比例加大,或增加转子数即可解决。 7.在性能、速度、起步、超车及耐用性方面之潜能,远优於往复式引擎。 转子引擎对马自达的影响 MAZDA为了研发转子引擎而败光家产释卖股份,FORD收购33%的股权(股东投资占20%~50%,拥有对该投资公司部份控制力,占有同比率的董事席次(CEO), 并持有同比率的认投资损益,亦即该股东为该投资公司的必要少数(minor),所以FORD掌有MAZDA的行销(注意喔,是行销而非研发),所以只能说FORD是MAZDA最大的股东罢了,况且近来FORD/MAZDA共同技术研发与共用的情况会日益普遍,Metrostart/MAZDA6 的Duratec引擎就是FORD/MAZDA/YAMAHA合作~~ 但是!!注意这个,FORD会挑上MAZDA除了MAZDA财务危机外,还有一个问题是FORD在亚洲没有研发据点,主要以欧美为主,MAZDA会变卖家产给FORD除了财务危机外,还包括FORD世界三大车厂的行销手法.... 从过去MAZDA系列车种121/323/626/929看不到FORD的影子,倒是亚洲LIATA/TELSTART/TIERRA/PREMACY有著MAZDA的味道,现在底盘共用,技术共享的情况日益普遍,说谁主导谁,这结论也下的太快....最明显的例子除了Metrostart/Mazda6 Duratec Engine,还有下一代的Ford Focus/Mazda Protege/Volvo S40 底盘共用!!

  好了,今天关于“转子多少画”的探讨就到这里了。希望大家能够对“转子多少画”有更深入的认识,并且从我的回答中得到一些帮助。

    A+
标签: 转子多少画